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This lecture is based on materials found in the second half of Chapter 3 of the
textbook, “Digital Image Processing”, 4™ Edition, by RC Gonzalez and RE Woods.




Neighbourhood operation

Origin N

Yo

X fpom-mmmmmmeee-

Image f

wlueisﬂxo,yo)]

v 3 x 3 neighborhood
of point (x,,y,)

(x9,y0) — arbitrary location in image
Neighbourhood is a rectangle
centred on (xq, y,)

This shows a 3x3 neighbourhood
Operator T is applied to the pixel
values of neighbouring pixel
surrounding f (xq, ¥o)

The result of T is output image
value g(xg, vo)

Processing the entire image
requires such an operation
performed over the entire image,
pixel-by-pixel, starting from the
origin
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Here is a recap of the idea of neighbourhood operation or processing. Unlike the
last chapter, all operations in this chapter require computation involving
neighbouring pixel values.




Filter Kernel applied to image @ f(x, y)

=
leagc origin
‘ | I ——y w(—1,—1)] w(—1,0) | w(—L1,1)
Kernel origin —, 1 \
= //L w(0,-1) | w(0,0) w(0,1) | Filter kernel, w (s,1)
\ Filter kernel
| w(l,—-1) w(1,0) w(l,1)
) N
Image pixels 7 : fx=Ly-1| fe=1y) |flx=1y+1) Kernel coefficients

flx,y

1)

fxy)

fl.y+1)

flx+1,y

flx +1,y)

N\

flx+1,y+1)

Pixel values under kernel

A\
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The operation T uses a filter kernel (sometimes also known as a filter mask), which
contains coefficient values. This kernel, designated w in the slide, is placed on top
of a pixel in the image f(x,y), so that the centre of the kernel is on top of the pixel

f(xy).

The operation T involves multiplying each of the coefficient of the kernel with the

pixel value underneath, and then sum all products together. The result of such sum-
of-product computation is the new pixel value at the output g(x,y). We then move
the kernel along, and repeat this over all pixels of the input image.

This operation has two flavours: correlation and convolution. We will next consider

the difference between the two.



Spatial Correlation: Sum-of-products

of

w(—1—1)f w(—1,0) § w(—11)

w(0,—1) | w(0,0) w(0,1) | Filter kernel, w (s,1)
w(l,-1) | w(1,0) | w(1,1)
fx=1y=1)| flx=1y) |flx—=1,y+1) t Kernel coefficients
e
gx,y)=w-,-Df(x-1Ly-1)+w(-1,0)f(x-1Ly) + ...
fley=Dr | sy Syt D +w(0,0)f(x,y) + ... + w(L,1)f(x +1,y +1)
In general
fx+1L,y=1)| fix+1,y) |[flx+1,y+1)
\ a b
gx,y)= D, X w(s,0)f (x+5,y+1)
s=—at=-b
Pixel values under kernel
when it is centered on (x, y)
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Here is the mathematical formulation of the correlation operation.

a b
glx,y)= > > w(s,t)f(x+s,y+1)

s=—at=-b

The filter kernel has its orgin in the centre w(0,0). It has 8 neighbours for a 3 x 3
kernel as shown in the slide. (8 + the centre =9 =3 x 3.) The kernel is 2b + 1 pixels
high (y direction) and 2a + 1 pixels wide (x direction). The sum-of-product
computation is performed for each row in turn (s = -a to s = a). This corresponds to
the OUTER summation symbol Z . For for each row, we perform 3 multiply-and-
add operations between the kernel coefficients and the pixel values.

In other words, f(x,y) is the current pixel to which the operator T is being applied.
The basic operation is to multiply each of the kernel value to the pixel underneath.
So w(0,0) is multiplied with f (x,y), w(0,1) with f(x,y + 1), w(1,1) with
f(x+1,y+1),and so on, until all 9 products are computed. The products are
then summed together to found the output pixel value g(x, y).

We then move the kernel to the next pixel and repeat the operation. This is done
on EVERY pixel of the image to produce the processed output image.

The double summation equation in the slide is the basic neighbourhood operation
called CORRELATION.




1D Correlation Example
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Here is a one-dimension walk-through of the correlation operation. The kernel has
five elements. The original 1D image has 8 pixels. We align the middle of the kernel
(value = 4) to the first pixel.

There is a problem: no values are available to align with the first two elements of
the kernel. What do we do?

There are many strategies to deal with this so-called boundary problem. One
common method is to “zero-pad” the data. We add two extra zero at the front and
back of the pixel sequence. Now we can perform correlation on all 8 input pixels.

One important note: the input sequence are all zero except for one sample values.
This is like an impulse function that you have come across in your 2" year
Electronics 2 module. The result of the correlation operation to such impulse is the
kernel BUT IN REVERSE. This is because as we shift the kernel over the image, the
‘1’ value encounter the coefficient of the kernel first.




2D Correlation Example

[ ——
rOrigin f w
00000
0O 0 0 0 O ‘iﬁ? 1 2 3
00100 . 4 56
00000 correlate yield 7 8 0
0000 0O results = mirrored
kernel
L Initial position for w Correlation result Full correlation result
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7 8 910000 09 870 009Y 8700
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O 0O 0 0 0 0 0 0O 0 0 0 0O O 0O 0 0 0 0 0
0O 0O 0 0 0 0 o0 O 0 0 0 0 0 0
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We can also extend the 1D case to a 2D kernel on a 2D image. Here the image has a
1 in the middle and the kernel is 3 x 3. Performing correlation resulted in the kernel
appearing in the output image at the centre (where the value 1 was in the input).
However, the output image is also the same as the kernel values MIRRORed,
meaning everything flip over around the centre of the kernel.




2D Convolution Example

[ Ss—
rOrigin f w
0 0 0 0O
0O 0 0 0 O * 1 2 3
00100 4 56
000O0O0 Convolute yield 7 8 9
0000 O same result as
kernel
vRotated w Convolution result Full convolution result
:5_5_7_: 0000 000O0O0O0O0
6 5§ 4,0 0 O 0O 0O 0 0 0 O O 0O 0O O 0 0 0O
3 2 1,00 00 01230 0012300
0001000 0456 0 00456 00
0O 00O0OOO0ODO 07 8 9 0 007 8 900
0O 0O 0 0 0 0 0 0O 0 0 0 0O O O 0O O 0 0 0O
O 0 0 0 0 0 O O 0 O 0 0 O 0O
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Instead of performing the sum-of-product operation with the kernel in the case of
the correlation operation, we can pre-rotate the kernel as shown here. Now the
same sum-of-product computation yield a result where the kernel is the correct way
round.

This operation of flipping or rotating the kernel before the multiply-and-add
operation is called CONVOLUTION. Again you have learned convolution in your 2@
year Electronics 2 module, although that was only for 1D signal samples.
Nevertheless, the principle is exactly the same.




Fundamental properties of Correlation vs Convolution

Property Convolution Correlation

Commutative fhg=gxf —

Associative fr(gxh)=(f*g)*h —

Distributive fr(g+h)=(fxg)+(f%h) fr(g+h)=(fvg)+(fh)
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As you can see, correlation and convolution are similar in operation, except that in
the case of convolution, one needs to flip or rotate the filter kernel before the sum-
of-product computation.

However, the two operations have different properties. Convolution is commutative,
associative and distributive. Correlation only conforms to the distributive property.

For most of this module , we will only use convolution and not correlation as our
image neighbourhood operator T.




Moving Average (Box Filter) Smoothing Kernel

¢ Averaging filter is a lowpass filter
& It suppresses rapid changes (i.e. high

frequency)
1 1 1 ¢ It blurs edges
1 ¢ It can reduce noise which tense to be high
9 X 1 1 1 frequency
¢ + quick and simple
1 1 1 ¢ - effect depends on orientation of features
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By defining different filter kernels and perform convolution operation on the image,
we can perform many different FILTERING actions. We will consider only two
classes of filters in this lecture: lowpass (smoothing) and highpass (sharpening).

A lowpass filter is a smoothing filter. The simplest of which is a moving average (or
Box) filter. Shown here is a 3 x 3 kernel, all with coefficient of 1. The factor 1/9is
needed to ensure that the sum of all coefficients is 1. Otherwise, the intensity of
output image g(x,y) is amplified by 9!

This filter, just like the 1D moving average filter, suppresses fast changes. It blurs the
edges and averages out the noise in the image.

The Box filter is simple to implement but is not usually the best smoothing filter to
use. It does not suppress noise well and its output depends on the direction of the
image feature. This is called a non-isotropic filter.




Gaussian Kernel

¢ Also a lowpass filter

+ Circularly symmetrical (isotropic), i.e.

direction independent

0.3679 | 0.6065 | 0.3679 . .
¢ Gaussian kernel is of the form:

s+t
1 -

28976 < | 06065 | 1.0000 | 0.6065 w(s.t)= G(s.t) = Ke 2"

0.3679 | 0.6065 | 0.3679 G(s,1)

I
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Instead of using a kernel that has equal coefficient, a popular and useful kernel is
the Gaussian filter. Here, the coefficients are samples of a 2D gaussian function as
shown in the slide. The 2D Gaussian function is an exponential function given by:

s+ 1°

w(s,t) = G(s,t) = Ke 2

The value o determines how spread out (width) is the function. The larger the value
of g, the “fatter” the Gaussian kernel.

The 3 x 3 kernel is just the sampled values of the Gaussian function with the mid-
point being the centre of the function and has a value of 1 (if K=1 in the equation).

Note that the 1/4.8976 scaling factor for the 3x3 kernel ensures that the sum of all
the coefficient remains one.




Example of applying a Gaussian Filter

2566 X 2758 Hubble Gaussian Filtered
Telescope image

Gaussian Filtered then thresholded
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This slide shows the use of the Gaussian filter to extract features from a Hubble
Telescope image. The Gaussian filter helps to remove many small dots (other stars),
and the thresholding operation extracts the main features.




Media Filter for noise reduction

X-ray of PCB corrupted 19x19 Gaussian flter Filtered with 7 x 7 median filter
by salt-and-pepper noise witho =3
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Both the Box filter and the Gaussian filter are linear filters. They obey the law of
superposition. However, some enhancement tasks require non-linear filtering.
Here is an example of an X-ray image of a printed circuit board which is corrupted by
salt-and-pepper (random spotty) noise. Applying a Gaussian smoothing filter
reduces the noise but it also blurs the image substantially.

Instead of performing the linear convolution operation with the Gaussian filter, one
use a median filter instead. In a media filter, the median value of all the pixels
within the kernel window are found by the following method. For the 3 x 3 filter, all
9 pixel values of the image in the window are collected and arranged in ascending
order. The median value is one in the centre, where 50% of samples are above and
below this value.

In the example here, the median filter kernel is 7 x 7. The median value is the

middle value if we rank all 49 intensities from low to high, and pick the middle
value. As can been seen here, the noise is gone, and yet the PCB image is NOT
blurred.




Foundation of Sharpening Filters

¢ Based on first- and second-order derivatives (detect changes)
¢ First derivative:

1. Must be zero in area of constant intensity

2. Must be nonzero at the onset of intensity step or ramp

3. Must be nonzero along intensity ramps

L fa+1)- 1)
X

¢ Second derivative:
1. Must be zero in area of constant intensity
2. Must be nonzero at the onset AND END of intensity step or ramp
3. Must be ZERO along intensity ramps

aZ
ox

7=+ D+ f(x-1)-2f(x)
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The second class of filters we consider in this lecture is that of high-pass. These are
also known as sharpening or edge enhancement filters.

Sharpening filters are based on the concept of derivatives. Here are the properties
of the first and second derivative for 1D data.




Example of 1st and 2nd Derivatives

Vs Intensity transition

6 —I—l—@\ @ a—= = -a
5 Constant “u i
intensity !
2 4 1ty \.\/_Ramp Step j‘l,
E \l I
L 3 \ !
g 2 “u !
N = Data points
1 \@—-—-I—-c—-n— p
0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 1 1 X
Values of
scantime L6161616[sa[3]2]t[1[1]1]1]1]6]6][6]6]6]~*
1st derivative 0 0-1-1-1-1-1 0 O O O O 5 O O O O af
2nd derivative 0 0—-1 0 0 0 0 1 0 0 0 O 0 0 0 a—:f(x+1)—f(x)
5 X
4r 2
3t | 9L = fx+ 1)+ fx-1)-2f(x)
/ 2 -
e ! ox
z 1r O, ;'( b
g 0B OO e B E _/ >3- @ - x
E 4L [ S—— Zero crossing /
_2 - i
—3r « First derivative
—4 [J Second derivative I‘-.’:
-stL &
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This is an example of what happens when we calculate the 15t and 2" derivative of a
scan line of an image (1D).




The Laplacian Kernel

’f

2
¢ The Laplacian filter is given by:  V*f = g_é +—

X~ dy

¢ Indiscrete form (e.g. image pixels), we can compute in x and y directions:

Of Of _
Fw fx+Ly)+ f(x-1,y)-2f(x,y) ay—z_ fley+D)+ f(x,y-1) = 2f(x,y)
¢ Combining the two give us:
V2 f(x,y) = f(x+1,y) + f(x=Ly) + f(x,y+ 1) + f(x,y = 1) - 4f(x,y)
¢ Uniform intensity sums to zero!

0 1 0 1 1 1 0 -1 0 -1 -1 -1
1 —4 1 1 -8 1 -1 - -1 -1 8 -1
0 1 0 1 1 1 0 -1 0 -1 -1 -1
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These are the Laplacian filter kernels for 2D filtering.
The first one is the direct implementation of the equation:

Vf(x,y) = f(x+1Ly) + f(x =1L y) + f(x,y +1) + f(x,y—1) — 4f(x,y)

The other three kernels are alternative form of the Laplacian filters that detect
sudden changes in different directions.




Example of using Laplacian Filter

¢ Laplacian filtered output scaled to [0, 255]
¢ Most negative scaled to 0; most positive scaled to 255
¢ Detect rapid changes in intensities
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Applying Laplacian filter to a moon image extract the rapid changes in intensity.




Sharpen images with
Unsharp Masking & Highboost Filtering

¢ Combine smoothed (unsharped) version of an image with the original image
¢ Steps are:

1. Blur the original image

2. Subtract the blurred image from original (resulting difference is called the MASK)
3. Add the mask back to the original image

¢ f(x,y) denotes the blurred image (say, with Gaussian filter), the mask is:
gmask(x’y) = f(x’y) - f(‘x’y)
¢ Add a weighted portion of the mask back to original:

g(x,y) = f(x,y) + kgmask (%, ¥)

¢ k=21.Ifk=1,itisan unsharp filter. Ifk > 1, itis called a highboost filter.
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Unsharp and highboost filters subtract a blurred image from the original, then add it
back to the original image after scaling by k. k must be >1.




1D lllustration of the Unsharpen Mechanism

Original signal + Unsharp mask
~O - :
' /S

L\

Smoothing filter + ~F

g l
P
Sharpened signal
Blurred signal
-
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Here is an illustration of the mechanism.




Example of Unsharpen & Highboost Filtering

31 x 31 Gaussian
lowpass filter o = 5

Unsharpen Filter (k=1) Highboost Filter (k=4.5)

DIPXE DIP-XE
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Applying both types of filters enhances the edges.




Gradient Image (edge detection)

# Laplacian filter uses 2" derivatives that can be positive and negative
¢ Another approach is to only use the MAGNITUDE of the gradient:

— 8 gf M(x,)’)—”:f”—mag(Vf) = gi +g3
Vf = e X
f grad(f)_[ ]_

y

of M(x,y)=|g|+]g,l
ady

¢ The discrete version (Roberts cross-gradient operators :

a | 2| B 8. =(29—25) | and g, =(2z —2)
24 25 g ) 5 12

> M(x,y) =[ (20— 25)" + (25— 2)" ]
27 2y 29

M(x,y) = |zg — 25| + |25 — 2]
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Using only magnitude of gradient, we enhance only edges.




Gradient Image — Sobel Operators

¢ Better to use odd dimension kernels — it has spatial symmetry

¢ Most popular gradient image operation is that of Sobel, which is 3 x 3:

2

23

s

26

d
of %
g, = $=(z3 +2z, +29) — (z,+2z,+2;)

g

29

+ The resulting filter kernels (Sobel) for g, and g, are:

-1

—2 0 2 0 0

0

-1 0 1 1 2

1

¢ Yielding the gradient image: M(x,y)=[g? + gf]% =[[(z7 +22+2) - (2 +22,+ )]

1
+ [(z3+ 22 +2)) — (z,+2z,+ z7)]2:|2
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This is the Sobel operator — very common in image processing.




Example of using Sobel Gradient Filter (edge detection)

4 "

Image gf contact lens Edge detection with
with defect Sobel (spot the defect)
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Apply Sobel filter to perform edge detection.




Combining Everything! (1)

Whole body X-ray Laplacian Original + Laplacian Sobel of original
image
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Let us combine everything to enhance this X-ray image.




Combining Everything! (2)

Sobel + 5x5 Box filter Mask image by Original + Mask Contrast enhancement
product of Laplacian image by apply power-law
and Sobel+Box transformation
filtered
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The end result is to produced an enhanced image with low noise, high contrast, with
feature highlight and preserving sharpness.




